
KAN We Tensorize GraphSAGE

Richard Gao
UCSB

rwgao@ucsb.edu

Charlie Jyu
UCSB

cjyu@ucsb.edu

Sanjukta Krishnagopal
UCSB

sanjukta@ucsb.edu

Abstract

A common task in graph machine learning is to find low-dimensional embeddings
of nodes. After embeddings are generated, they can be applied to downstream
tasks such as recommendation systems and protein classification. These nodes can
be trained through unsupervised, semi-supervised, and supervised objectives. In
this project, we build upon previous work in two directions: introducing a new
aggregator and parameter reduction.

1 Introduction

Embedding graph nodes in low-dimensional vector space is a widely explored subject in graph
machine learning. Node embeddings seek to encode node-level features, neighborhood information,
and global information that can be later used for tasks such as node classification and clustering.
GraphSAGE [4] opts to learn aggregator functions to generate node embeddings. These learned
aggregator functions can then be applied to completely unseen nodes during inference on large
graphs.

For this project, we modify two aspects of GraphSAGE:

1. GraphSAGE incorporates node features from the dataset into calculating embeddings.
If this node input feature dimension is high, the model size can become very large. To
encourage training on larger feature spaces, we parameterize the linear layers of GraphSAGE
using tensor-train (TT) decomposition [10, 11], greatly reducing the number of trainable
parameters.

2. GraphSAGE introduces multiple trainable aggregators. To this end, we explore a new
aggregator parameterized by a Kolmogorov-Arnold Network (KAN) [9]. Instead of trainable
weights, KANs offer trainable activations parameterized by splines. Previous works [6, 18]
have explored the efficacy of KAN layers in Graph Convolutional Networks (GCN) [7] and
Graph Neural Networks (GNN) [15]. We seek to extend this analysis to GraphSAGE.

2 Related Works

KAN in graph models KANs have been sparsely explored in the space of graph machine learning.
Kiamari, et al. modify GCNs to create two new KAN models [6]. The difference between the two lies
in placing a KAN layer either before or after the aggregation step. In their first proposed architecture,
a KAN layer is applied post-aggregation; in their second, a KAN layer is applied to the embeddings
before aggregation. Zhang and Zhang divide the message-passing framework for node representation
into an aggregation and extraction step [18]. The extraction step is when a node update function is
used to update the next layer’s node features and is often parameterized by an MLP. Both papers
demonstrate improved performance over traditional methods. However, Zhang and Zhang point out a
dramatic increase in training time from using KAN. Our work operates in a similar setting; however,
we explore results on unsupervised and inductive node classification problems.

TT in graph models Previous work that applies TT-decomposition to graph machine learning is
also sparse. Both Yin, et al. and Qu, et al. propose using TT-decomposition on embedding tables
for memory reduction [17, 13, 5]. Our work explores directly applying TT-decomposition to the
trainable weights of GraphSAGE.

3 Background

3.1 GraphSAGE

GraphSAGE is an inductive learning framework that samples neighbors and aggregates them from a
local neighborhood up to depth K [4]. At each depth k ∈ {1, . . . ,K}, for every node, GraphSAGE
samples a fixed number of neighbors Sk, and retrieves their hidden representations generated from
the previous depth of k − 1. These hidden representations are then aggregated using a learnable
aggregator function that produces a neighborhood hidden representation. This representation is then
combined with the original node’s own hidden representation and passed through a learnable weight
and nonlinearity. The algorithm flow is detailed below 1.

Algorithm 1 GraphSAGE embedding generation
Input: Graph G(V, E); input features {xv,∀v ∈ V}; depth K; weight matrices Wk,∀k ∈
{1, . . . ,K}; non-linearity σ; differentiable aggregator functions AGGREGATEk,∀k ∈
{1, . . . ,K}; neighborhood function N : v → 2|V|

Output: Vector representations zv , for all v ∈ V
1: h0

v ← xv,∀v ∈ V
2: for k = 1, . . . ,K do
3: for v ∈ V do
4: hk

N (v) ← AGGREGATEk({hk−1
u ,∀u ∈ N (v)})

5: hk
v ← σ

(
Wk · CONCAT(hk−1

v ,hk
N (v))

)
6: end for
7: hk

v ← hk
v/∥hk

v∥2,∀v ∈ V
8: end for
9: zv ← hK

v ,∀v ∈ V

The original GraphSAGE paper provides multiple aggregator architectures. Their improvements over
each other in GraphSAGE’s results, however, are marginal. Thus, we focus on modifying the pooling
aggregator (1) for our project:

AGGREGATE
pool
k = max({σ

(
Wpoolh

k
ui

+ b
)
,∀ui ∈ N (v)}), (1)

3.2 Tensor-Train (TT) Decomposition

3.2.1 TT-Format

For notation, we will denote a tensor A by bold calligraphic uppercase letters and a matrix A
by just boldface uppercase letters. A tensor A ∈ RI1×I2×···×Id is said to be of order d, and
I1, I2, . . . , Id are called its modes. We can index A using an index i ∈ I1 × I2 × · · · × Id such that
A(i) = A(i1, i2, . . . , id).

A d-way tensor A is in TT-format if for all modes k ∈ {1, 2, . . . , d}, and for all indices of the k-th
mode jk ∈ {1, 2, . . . , Ik}, there exists a matrix Gk[jk] such that we can obtain the entries of A like
so [11]:

A(j1, j2, . . . , jd) =

d∏
k=1

Gk[jk] (2)

2

Together, the sets of matrices {Gk[jk]}Ikjk=1 for all modes k are called cores 1. The sizes of each
matrix in a core are determined by a sequence {rk}dk=0 referred to as the TT-ranks. Specifically, the
matrix Gk[jk] has size rk−1 × rk. Furthermore, r0 = rd = 1 in order to keep our matrix product (2)
corresponding to an entry in A a scalar.

Thus, storing the full tensor A requires
∏d

k=1 Ik elements, while storing it in TT-format requires
only

∑d
k=1 Ikrk−1rk elements. If we choose small TT-ranks, we can greatly reduce the amount of

elements needed to represent A and perform operations using tensorized representations.

3.2.2 Tensorizing Linear Layers

To take advantage of the compression introduced by using TT-format, it can be applied to a linear
layer of the form y = Wx+ b, where W ∈ RM×N , b ∈ RM .

Novikov, et al. start by tensorizing b ∈ RM into B ∈ Rm1×m2×···×md : Assume M has d factors
such that M =

∏d
k=1 mk. Define a bijection µ that maps a coordinate l ∈ {1, 2, . . .M} of b to

a vector index µ(l) = (µ1(l), µ2(l), . . . , µd(l)) of B. For every mode k, µk(l) ∈ {1, 2, . . . ,mk}.
Thus, the entries of b are defined as B(µ(l)) = bl, called the TT-vector.

Novikov, et al. tensorize W ∈ RM×N into W in a similar fashion by factoring N into d factors,∏d
k=1 nk, like we did M . Define a similar bijection ν for N that maps t ∈ {1, 2, . . . , N} to a

vector index ν(t) = (ν1(t), ν2(t), . . . , νd(t)). Construct an order d tensor W ∈ Rm1n1×···×mdnd .
Indexing W with (t, l) is equivalent to indexing W with (ν(t),µ(l)), with the advantage that we
can represent W in TT-format:

Wt,l = W((ν1(t), µ1(l)), . . . , (νd(t), µd(l)) =

d∏
k=1

Gk[(νk(t), µk(l)]. (3)

Thus, Novikov, et al. show that computing any linear layer using TT-format is equivalent to the
following:

Y(i1, . . . , id) =
∑

j1,...,jd

d∏
k=1

Gk[ik, jk]X (j1, . . . , jd) +B(i1, . . . , id), (4)

where X is obtained by reshaping x. If r = maxk rk is the maximal TT-rank, Novikov, et al. show
that the computational complexity of (4) is O(dr2 max{M,N}) [10].

3.3 Kolmogorov-Arnold Networks

3.3.1 Kolmogorov-Arnold Representation Theorem

The Kolmogorov-Arnold Representation Theorem establishes that for any multivariate function f
defined on a bounded domain, f can be decomposed into the sum of continuous univariate functions.
Formally, a function f : [0, 1]n → R can be written as,

f(x) = f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
, (5)

where for all p and q, ϕq,p : [0, 1] → R and Φq : R → R. This representation establishes that any
multivariate function only requires composition through summation of single variable functions.

Kolmogorov-Arnold Representation Theorem is not a well-explored topic in machine learning
because while ϕq,p are continuous, they are generally not smooth [9]. Liu et al. [9] propose a new
neural network architecture inspired by (5), showing that the representation theorem is an instantiation
of their network with a specific width and depth.

1In other literature, cores are expressed as order-3 tensors Gk. We can obtain the same formulation by simply
stacking the set of matrices {Gk[jk]}Ikjk=1 to obtain Gk, for some mode k.

3

3.3.2 Kolmogorov-Arnold Network (KAN) Architecture

In traditional deep learning, a L-layer multi-layer perception (MLP) is a composition of affine
transformations with nonlinear activations:

MLP(x) = (WL−1 ◦ σ ◦WL−2 ◦ σ ◦ · · · ◦W1 ◦ σ ◦W0)x. (6)

The weight matrices {Wl}L−1
l=0 are then optimized over some loss function. Liu, et al. prototype a

KAN architecture that fixes weights and instead learns activation functions. More formally, a depth L
KAN with shape [n0, n1, . . . , nL] has nl nodes in its l-th layer. The l-th layer maps input shape nl to
output shape nl+1, and is parameterized by a matrix of univariate functions:

Φl =

 ϕl,1,1 . . . ϕl,1,nl

...
. . .

...
ϕl,nl+1,1 . . . ϕl,nl+1,nl

 . (7)

Where each function ϕl,q,p is parameterized by trainable B-splines. The post-activation xl+1 is then
computed as

xl+1 =

 ϕl,1,1(·) . . . ϕl,1,nl
(·)

...
. . .

...
ϕl,nl+1,1(·) . . . ϕl,nl+1,nl

(·)

xl. (8)

Thus, the entire forward pass of a L-layer KAN can be written as a composition similar to (6):

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ0)x. (9)

Using this formulation, Liu, et al. show that the Kolmogorov-Arnold Representation Theorem is
equivalent to a 2-layer KAN with shape [n, 2n+1, 1]. Furthermore, Liu, et al. hypothesize that while
the Kolmogorov-Arnold Representation often admits non-smooth functions, a deep KAN architecture
may relax this behavior, encouraging smoother univariate functions.

4 Proposed Aggregator Architectures

In this section, we detail how we incorporate TT-layers and KANs into training GraphSAGE.

4.1 TT-Aggregator

The GraphSAGE paper highlights the importance of incorporating rich node features into training.
However, a greater node feature dimension also leads to an explosion in trainable parameters. Let d be
the dimensionality of each node’s feature space. Assuming we use depth k max-pooling aggregators
(1), GraphSAGE has approximately 3kd2 + kd parameters. The dimensionality d can often be large
and can become a limiting factor if we want to train a wider network. For example, if the nodes of a
graph encode text embeddings, we may wish to train on a larger feature space. In situations like this,
we can try tensorizing the weight matrices in GraphSAGE to reduce the number of parameters. Let
TT(W) denote the operation of tensorizing a weight matrix shown as shown in (3). We modify line
5 of Algorithm 1 by tensorizing Wk and reshaping the concatenation to the appropriate TT shapes:

hk
v ← σ

(
TT(Wk) · RESHAPE(CONCAT(hk−1

v ,hk
N (v)))

)
. (10)

We apply a similar modification to the max-pool aggregator (1):

AGGREGATE
pool
k = max({σ

(
TT(Wpool) · RESHAPE(hk

ui
) + TT(b)

)
,∀ui ∈ N (v)}). (11)

4

Parameter Count To analyze how this changes the number of parameters, assume that we can
factor d and 2d into d =

∏C
c=1 nc and 2d =

∏C
c=1 mc. Given prior determined TT-ranks {rc}Cc=0,

the total number parameters in a tensorized depth k GraphSAGE model is approximately given by,

#params = k

C∑
c=1

rc−1rcnc(nc +mc). (12)

It is difficult to control the factorizations of d, so most of the burden in parameter reduction falls
upon the TT-ranks {rc}Cc=0 that we choose. We use automatic rank determination using the TT-SVD
algorithm [11]. The core idea of TT-SVD is to reshape a tensor A ∈ RI1×I2×···×Id into a matrix
A ∈ RI1×I2I3...Id , and apply singular-value decomposition (SVD) to obtain TT-core G1. This process
of iteratively unfolding each mode of A and applying SVD is repeated until all TT-cores are obtained:

4.2 KAN-Aggregator

Since KANs directly learn non-linear activations as opposed to linear transformations composed
with MLPs (6), we can directly replace a fully connected layer with a KAN. However, we found that
directly initializing a KAN network did not work well and was difficult to train: given input and
output dimensions din and dout, a linear layer with a bias term yields din × dout + dout parameters.
To parameterize a KAN layer, we require the input and output dimensions, as well as spline order k
on G intervals. This yields din × dout × (G+ k + 3) + dout total parameters. We can see that even
for very small values of G and k, a KAN layer with the same input and output dimensions as an MLP
instantiates significantly more parameters.

Projection Layers To alleviate this issue, we propose downward and upward projection layers
Win and Wout to stitch higher-dimensional inputs and outputs with lower-dimensional KAN inputs
and outputs. Reducing the parameters of KANs is an open problem, and Liu, et al. speculate that
KANs require much fewer parameters than their MLP counterparts. Empirical works on KANs
and graph neural networks suggest that feeding KAN a latent representation improves performance.
Additionally, previous work on KANs with graph data [9] hypothesizes that LayerNorm [1] layers
improve the stability of KAN training, so we include them in our work as well. We apply these
changes to all weights + non-linearities in GraphSAGE. In line 5 of Algorithm 1:

hk
v ← (Wk

out ◦ KANk ◦ LNk ◦Wk
in)(CONCAT(hk−1

v ,hk
N (v))). (13)

We define the KAN-aggregator in a similar fashion:

AGGREGATE
pool
k = max({(Wpool

out ◦ KANpool ◦ LNpool ◦Wpool
in)(hk

ui
),∀ui ∈ N (v)}), (14)

5 Training

We test GraphSAGE in a fully unsupervised setting and use the unsupervised loss function proposed
in the original GraphSAGE paper:

JG(zu) = − log (σ(z⊺uzv))−Q · Evn∼Pn(v) [− log (σ(z⊺uzvn))] . (15)

This loss function is applied to the embedding outputs zu for every node u. The loss function
encourages similar representations between nearby nodes through a nearby node v that co-occurs
with u on a fixed-length random walk. To guide distant nodes to have different representations, the
loss functions samples Q negative samples from a negative sampling distribution Pn.

6 Experiments

6.1 Real World Data

We conduct experiments on three datasets: protein-protein interaction (PPI) [19] and Cora [3]. We
summarize the attributes of each dataset in Table 1. Note that the feature space of Cora is prime, so

5

Table 1: Datasets

Name Features Nodes Edges Classes

PPI (20 graphs) 50 ∼ 2, 245.3 ∼ 61, 318.4 121
Cora 1,433 + 1 2,708 10,556 7

Table 2: F1 score

PPI Cora

Name Parameters Unsup. F1 Parameters Unsup. F1

MLP-Pool (baseline) 64866 0.4658 2989374 0.727
TT-Pool 7123 0.4583 1172346 0.709
KAN-Pool 80610 0.4620 2843418 0.764

we pad each node feature by one dimension, denoted as "+1" in Table 1. This is necessary because
the dimensions of tensorized linear layers depend on the factorization of the original weight matrix’s
dimensions (3).

PPI The PPI dataset contains 24 protein-protein interaction graphs, where each graph is a distinct
human tissue. We reserve 20 for training, two for validation, and two for testing.

Cora The Cora dataset is a bibliographic dataset composed of Machine Learning papers classified
into seven classes. We split the data into training, validation, and test sets.

6.1.1 Experimental set-up

We try to adhere to as many of the original hyperparameter choices in GraphSAGE. We conduct
all experiments with rectified linear units as non-linearity, K = 2 aggregators/search depth, and
neighborhood sample sizes S1 = 25 and S2 = 10 for each search depth. We compare our proposed
methods against a baseline MLP-based pooling aggregator 1 from the original GraphSAGE paper.
For each model, we perform stochastic gradient descent on unsupervised loss (15) using the Adam
optimizer over multiple epochs (10 for PPI, 50 for Cora). For each model, we report the number
of trainable parameters as well as their unsupervised F1 score 2. The F1 scores are obtained by the
logistic SGDClassifier from the scikit-learn [12]. This model is never fine-tuned on the validation
and testing data. For each model, we perform hyperparameter tuning on the learning rate for Adam.
The results for each model are detailed in Table 2.

6.2 Synthetic Data

We also conduct experiments on our models using synthetic graphs with more simple relationships to
analyze the embeddings generated by each model. To generate the nodes, we pick random means and
standard deviations for each class to create class instances. We then pass each normally distributed
data point into a sigmoid transformation to generate nodes. To generate edges, we first pick two
random nodes. The probability we place an edge between them depends on two factors: an affinity
score and cosine similarity. The affinity score is a uniform random variable for any pair of classes,
scaling the likelihood of an edge between nodes from those classes. For cosine similarity, we define
the probability density P over [−1, 1] to be P (x) = exp(c(x−1)), where c is a normalizing constant
to make P a valid density function. We outline our graph generation flow in Algorithm 223. We aim
to create a dataset with distinct classes and encapsulate both class-level interactions through affinity
scores and node-level interactions through cosine-similarity.

6.2.1 Experimental set-up

We test our models on a synthetic graph with C = 10 classes, N = 500 nodes, M = 3000 edges,
and dimensionality d = 16. Again, we adhere to the same hyperparameter choices in GraphSAGE

2For shorthand, denote [n] as the set {1, . . . , n} ⊆ N
3We denote σ as the sigmoid function, and σc as a standard deviation value

6

Algorithm 2 Generate Synthetic Data
Input: C classes, N nodes, M edges
Output: Synthetic graph G(V, E)

1: Sample means from multivariate normal µ1, . . . ,µC ∼ U([0, 1]d)
2: Sample standard deviations σ1, . . . , σC ∼ U [0, 1]
3: for c = 1, . . . C do
4: Vc ← {σ(vi) | vi ∼ N (µc, diag(σc), i ∈ [N/C]} ▷ generate nodes for each class
5: end for
6: V ←

⋃C
c Vc

7: Sample affinities a1,1, a1,2, . . . , aC,C ∼ U [0, 1]
8: E ← ∅
9: while |E| < M do

10: Sample vi and vj from V
11: if p ∼ U [0, 1] < ai,j ∗ P (COS-SIM(vi,vj)) then
12: E ← E ∪ (i, j)
13: end if
14: end while
15: return G(V, E)

Table 3: Synthetic Experiment

Name Parameters Unsup. F1

MLP-Pool (baseline) 6544 0.56
TT-Pool 1148 0.54
KAN-Pool 6636 0.48

and optimize over 50 epochs. We fine-tune the learning rate of Adam on a validation set. Our test
results are reported in Table 3.

6.2.2 Visualization

A big selling point of KANs is that they are "interpretable" and can be visualized. To this end, we
plot the learned activations from our KAN model. Specifically, we found that KANk (13), which
incorporates the neighborhood embedding with the original node embedding, changed the most after
training. We plot the activations ϕq,p between each input node and all its outgoing edges for every
input node of KAN1 in Fig. 1. We can see that many input and output pairs learned similarly shaped
activations, suggesting there could be redundancy in our architecture.

We also use t-SNE [16] to visualize and compare the embeddings created by each model. We observe
that embeddings produced by MLP-based aggregators in Fig. 2 are more similar to ones produced by
the TT-based aggregators in Fig. 3. The KAN-based aggregators produced a denser representation
where nodes from different classes are very tight, which could be the reason for its lower performance
on this dataset.

7 Discussion

Overall, we found that tensorizing the GraphSAGE framework was able to greatly reduce the number
of trainable parameters while maintaining comparable F1 scores, suggesting that weights trained on
graph data are highly compressible. Furthermore, our results show that KANs can match and even
exceed the performance of GraphSAGE. In the synthetic task, however, the KAN model exhibited
poorer performance, which may suggest that using projection layers may not be suited for smaller
datasets. We refrain from making any claims on any theoretical improvements, as empirical results
are often variable and sensitive to more rounds of hyperparameter tuning. Additionally, we only
evaluate the performance of each unsupervised model through an extrinsic evaluation metric. Our
main goal is to show the viability of applying tensorization and KAN to graph models.

7

Figure 1: Plots of the B-spline activations learned by KAN on the synthetic task.

8

Figure 2: MLP t-SNE Node Embeddings Figure 3: TT t-SNE Node Embeddings

Figure 4: KAN t-SNE Node Embeddings

Future directions Our results are preliminary and do not take into account the computational
overhead from forgoing sparse matrix multiplication, which is built into graph machine learning
libraries. Our aggregators still rely on the max-pooling operation to remain permutation invariant
with respect to graph nodes. Similar to the proposed LSTM-aggregator in the original GraphSAGE
paper, we may try to train a KAN-based aggregator that replaces the max-pooling operation entirely
using randomly permuted node order during training.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[2] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[3] Lise Getoor. Link-based Classification, pages 189–207. Springer London, London, 2005.

[4] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2018.

[5] Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang Qin, Jianhao
Shen, Fang Sun, Zhiping Xiao, et al. A comprehensive survey on deep graph representation
learning. Neural Networks, page 106207, 2024.

[6] Mehrdad Kiamari, Mohammad Kiamari, and Bhaskar Krishnamachari. Gkan: Graph
kolmogorov-arnold networks, 2024.

[7] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2017.

9

[8] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor
learning in python, 2018.

[9] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y. Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks, 2024.

[10] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing neural
networks, 2015.

[11] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

[12] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in
python, 2018.

[13] Zheng Qu, Dimin Niu, Shuangchen Li, Hongzhong Zheng, and Yuan Xie. Tt-gnn: Efficient
on-chip graph neural network training via embedding reformation and hardware optimization.
In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’23, page 452–464, New York, NY, USA, 2023. Association for Computing Machinery.

[14] Yangjun Ruan, Yuanhao Xiong, Sashank Reddi, Sanjiv Kumar, and Cho-Jui Hsieh. Learning to
learn by zeroth-order oracle, 2019.

[15] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[16] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

[17] Chunxing Yin, Da Zheng, Israt Nisa, Christos Faloutos, George Karypis, and Richard Vuduc.
Nimble gnn embedding with tensor-train decomposition, 2022.

[18] Fan Zhang and Xin Zhang. Graphkan: Enhancing feature extraction with graph kolmogorov
arnold networks, 2024.

[19] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, July 2017.

A Appendix / supplemental material

A.1 Implementation

We build our implementation on top of the GraphSAGE layer from Pytorch Geometric [2]. We use
the TensorLy library [8] implementation of TT-SVD for automatically determining ranks during
weight tensorization. [14]

10

	Introduction
	Related Works
	Background
	GraphSAGE
	Tensor-Train (TT) Decomposition
	TT-Format
	Tensorizing Linear Layers

	Kolmogorov-Arnold Networks
	Kolmogorov-Arnold Representation Theorem
	Kolmogorov-Arnold Network (KAN) Architecture

	Proposed Aggregator Architectures
	TT-Aggregator
	KAN-Aggregator

	Training
	Experiments
	Real World Data
	Experimental set-up

	Synthetic Data
	Experimental set-up
	Visualization

	Discussion
	Appendix / supplemental material
	Implementation

